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1 Introduction

The theory of crossed product algebras lies at the intersection of several areas of
modern mathematics: functional analysis, representation theory, topology, and noncom-
mutative geometry. It provides a unifying framework in which one can study the relation
between group symmetries and algebraic structures. In the context of this thesis, devoted
to the study of periodic cyclic homology of crossed product algebras, it is natural to begin
by recalling the analytic side of the story: convolution algebras, their completions into
group C*-algebras, and the vast machinery developed to analyze their structure.

The starting point is classical. When a locally compact group G acts on a topological
space X, the action encodes a notion of symmetry of X. It mixes the algebra of functions
on X with the group algebra of G. The outcome is the crossed product algebra, denoted
%60(X) x G, which contains information about both the geometry of X and the representa-
tion theory of G. Crossed products are thus the natural receptacle for invariants of group
actions.

Even in the simplest case, when X is reduced to a point, the crossed product 6y(pt) <G
is nothing other than the group C*-algebra C*(G). This object has been studied inten-
sively since the 1950s, following the foundational works of I. Gelfand, M-A. Naimark, and
G. Segal. The universal property of C*(G) is that it encodes all unitary representations
of G, while the reduced group C*-algebra C(G) encodes all its tempered representations.

One of the most remarkable aspects of group C*-algebras is their topological rigid-
ity. Although defined analytically as completions of the convolution algebra %6.(G), their
K-theory groups often reflect geometric or homological invariants of G and of spaces on
which G acts. For instance, when G = Z, the Pontryagin duality shows that C*(Z) =
%6(S1), and its K-theory is canonically identified with the topological K-theory of the cir-
cle S1, and for compact groups G, the Peter—Weyl theorem identifies Ko(C*(G)) with the
representation ring R(G). In more complicated cases, such as real reductive Lie groups or
non-amenable discrete groups, the computation of K;(C(Q)) is a highly non-trivial prob-
lem, tied to questions in harmonic analysis, index theory, and noncommutative geometry.

The main conceptual tool to relate geometry and analysis in this setting is the assem-
bly map. Roughly speaking, the assembly map takes a G-equivariant elliptic operator
defined on a proper G-space and associates to it an index in the K-theory of C}(G). This
construction produces a homomorphism

u:K$(EG)— Ki(CHG)),

where EG is the universal proper G-space. The Baum—Connes conjecture predicts that
this assembly map is an isomorphism for all second countable locally compact groups.
The conjecture lies at the heart of noncommutative geometry, with deep connections to
topology (via the Novikov conjecture), to algebra (through idempotents in group rings and
the Kadison—Kaplansky conjecture) and to geometry (via orbital integrals).



In the special case of reductive Lie groups, the assembly map takes a particularly
elegant form. If G is a connected reductive Lie group with maximal compact subgroup
K, then the homogeneous space G/K is a symmetric space of noncompact type. It carries
a canonical G-invariant Spin¢-structure, and hence a Dirac operator D. For every finite-
dimensional representation V of K, one may twist D by the associated homogeneous
bundle, obtaining a twisted Dirac operator Dvy. The Dirac induction map

D-Ind§ :RK) — Kaimax)(Cr(@G)
vl — w(IDv]1)

is then precisely the assembly map in this context. The Connes—Kasparov theorem as-
serts that this map is an isomorphism, thereby computing K;(C}(G)) explicitly in terms
of the representation ring of K. The proof of this result is one of the landmarks of op-
erator algebra theory: A. Wassermann proved it in 1987, using Arthur’s deep structural
results about the unitary dual of G, while V. Lafforgue gave a demonstration in 1998
introducing a new Banach KK-theory and provided a flexible framework encompassing
both real and p-adic groups.

The remainder of this chapter is organized as follows. Section 2 recalls the theory of
convolution algebras and group C*-algebras, emphasizing the role of different comple-
tions and their relation to the unitary dual. Section 3 introduces crossed product alge-
bras, first algebraically and then analytically, with coefficients and examples. Section 4
surveys the basic facts about K-theory of C*-algebras, including Bott periodicity, Morita
invariance, and illustrative examples. Section 5 presents the analytic assembly map, the
Baum-Connes conjecture, the Connes—Kasparov theorem, with emphasis on Dirac induc-
tion. Section 6 discusses its connections to other related conjectures. Section 7 introduces
the deformation picture via the Cartan motion group.

2 Representations and convolution algebras

The convolution algebra %6.(G) of a locally compact group G provides an algebraic
framework for representation theory: instead of considering individual group elements,
one studies linear combinations acting via convolution. This leads naturally to group C*-
algebras, obtained by completing 6,(G) in suitable norms. The full group C*(G) encodes
all unitary representations, while the reduced group C}(G) captures the tempered rep-
resentations. These constructions link harmonic analysis and operator algebras. Classi-
cal examples include for instance finite groups (recovering group algebras) and abelian
groups (via Fourier transform). This section introduces convolution and completions,
preparing the ground for crossed products, where the group action interacts with addi-
tional algebraic data.

2.1 Group representations

We set G to be a topological group. A (complex) representation of G is the data
of a complex Hilbert space V with a group homomorphism 7 : G — End(V) where for
all v eV, g — n(g)(v) is continuous for the topology of G. We will write 7, V or (7,V)



depending on the context. A morphism of representations between (,V) and (7,W)
is a complex-linear map ¢: V — W such that for all ge G

¢pon(g)=1(g)o¢.

The space of representations of G defines a category Rep(GG) which encapsulates deep
information coming from the group and is a key structure to study it. In good circum-
stance, it is even possible to recover the group from its representation category thanks
to Pontryagin or Tannaka-Krein dualities [Bru94l]. Given two representations (,V) and
(1,W), their direct sum V @ W and their tensor product V ® W are representations of
G for the rules:

mot1)g):=n(g)e1(g) and (TR T)(g) := n(g) ® T(g).

The space of finite dimensional representations of G is then a ring called representation
ring of G and denoted R(G). Also, we say that a representation (,V) is irreducible
if any closed subspace W <V which is stable under n(g) for all g € G is either W = @ or
w=V.

THEOREM 2.1 When G =T is discrete, the algebra C[I'] of complex valued Dirac functions
on T realizes the following equivalence of categories:

Rep(I') = C[I'] — mod.

This result motivates the study of convolution algebras as they encapsulate, at least
for the discrete case, the major behavior of the category of representations. It stands
as an non-commutative analogy of classical geometry: whereas the study of commutative
algebras provides information on the spaces of points, non-commutative algebras describe
the spaces of representations.

2.2 Convolution algebra

Classical geometry associates to a space the commutative algebra of continuous func-
tions vanishing at infinity. This algebra encapsulates all the geometrical information
arising from the space. Now, for a group (discrete, compact, locally compact, p-adic, etc)
we want to recover the same process: to associate a canonical algebra outlining the be-
havior of the group. The answer is multiple, depending on the topology of the group and
the behavior we want to extract from it, but they all appear as completions of the convo-
lution algebra of the group.

In this setup, the basic non-commutative algebra associated to G is the convolu-
tion algebra %.(G) of compactly supported complex valued continuous functions on G
[Bou06]. Fixing a Haar measure on GG, the convolution algebra is endowed with the prod-
uct:

(1% fa)(g) = fG F1()fo(s L g)ds.

When G =T is discrete, it reduces exactly to the group algebra C[I']. For instance, the
convolution algebra %.(Z) is the space of complex valued Z-sequences with Cauchy prod-
uct.



The integrated form of a representation (1,V) of G is the map 7 : 6.(G) — B(V)
from the convolution algebra to the space of bounded operators on V, defined as follows:

F(F)w) = fG Fl)n(gvdg. 1

The integrated form verifies the property that 7(f1 *x f2) = 7(f1) - 7(f2) for all f1,f2 € G.
It equips the vector space V with a left-module structure over the algebra %.(G) which
depends only on the representation. The transformation 7 — 7 even realizes the equiva-
lence of categories of theorem

When G is abelian, its Pontryagin dual is the space of its unitary characters:

G :=Hom(G,U(1)).

It defines a locally compact group with the property G = G, known as Pontryagin self-
duality. The Fourier transform sends any element of the convolution algebra of G to a
function vanishing at infinity on its Pontryagin dual:

0 €.(G) — Go(B).

In the abelian case, it constructs a bridge between representation theory and classical
geometry. As the convolution algebra is commutative if and only if the underlying group is
abelian, this Fourier-type argument doesn’t hold in generality. It is because the expected
dual space or quantum space is not necessarily geometric but of representation type.

2.3 Completions

2.3.1 Unitary representations

We say that a representation (7,V) of G is unitary if for every g € G the operator n(g)
is unitary as operator on V [Mac77]. Two unitary representations (7,V) and (7,W) are
said to be equivalent, and we note V ~ W, if it exists an operator 7' : V — W such that
forall ge G, Tn(g)=1(g)T.

We define the unitary dual of a locally compact group G is the set of equivalence classes
of irreducible unitary representations of G:

G := {unitary irreducible representations of G}/ ~ .

It is a topological space equipped with the Fell topology [Fel62]. When G is abelian,
irreducible representations are one-dimensional and the unitary dual is nothing else than
the Pontryagin dual. For non-abelian group the unitary dual is more complicated and is
a central motivation for the Langlands program [BZSV24].

DEFINITION 2.1 The group C*-algebra C*(G) of a locally compact group G is the com-
pletion of €.(G) with respect to the x-norm defined as:

17115 == sup [7Z(I.
[rleG
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This algebra plays a key role in representation theory and non-commutative geometry,
see [Dix77]. It is the C*-algebra encoding all the unitary representations of G. The Fell
topology is set to obtain a bijection between the unitary dual G and the set of primitive
ideals of C*(G). It produces a topological approach to a representation theory problem.
When G is abelian, the Fourier transform f — ]? even gives the identification

C*(G) = %6o(G). (2)

2.3.2 Tempered representations

A tempered representation is a unitary irreducible representation which is weakly
contained in the left-regular representation [Fel62]. The tempered dual of G is defined
as

@t := {tempered representations of G}/ ~ .

It is a subspace of unitary dual and inherits naturally of the induced Fell topology. Now,
the corresponding C*-algebra is known as the reduced C*-algebra of the group.

DEFINITION 2.2 The reduced C*-algebra C}(G) of a locally compact group G is the
completion of 6.(G) with respect to the reduced *-norm defined from the integrated
form of the left-regular representation A:

£l = 1A

When the group is compact (and more generally amenable), the Peter-Weyl the-
orem asserts that every irreducible unitary representation is tempered, which gives
C*(G)=C}(G) in that case.

When G is a Lie group, the main convolution algebra is not 6.(G) but €°(G) as we
want to study smooth representations: the linear map 7 : G — GL(V) needs to be smooth
for the topology of the Lie group. Completions of €.°(G) capture analytic properties of
smooth representations that are difficult to study directly. The general picture links
different classes of representations and different completion of the convolution algebra of
the group.

2.3.3 Harish-Chandra algebra

Now, G stands as a real reductive Lie group. The Harish-Chandra Schwartz alge-
bra .#(G) of the group G is a space of functions on G whose all derivatives decay faster
than any polynomial in a certain length function [Har66]. A FAIRE EN DEMANDANT
A JULIETTE

This algebra is dense in the reduced C*-algebra C*(G) and due to V. Lafforgue, N.
Higson and V. Nistor, they compute the same K-theoretical invariants (see (12)). More-
over, this algebra define a great receptacle for analytic objects coming from representa-
tion theory. Indeed, due to the the Paley-Wiener theorem, which asserts that the Fourier
transform identifies this algebra with certain rapidly decreasing families of operators,



characters and orbital integrals extend continuously to traces on .#(G) but not necessar-
ily on Cx(Q).

After the full and reduced C*-algebras, and the Harish-Chandra Schartz space, here
is a condensed tabular for key examples.

Group type Type of irreducible representations | Crossed product algebra
Locally compact Unitary (G) C*(@)
Tempered (G;) Cx(@)
Compact Unitary or Tempered (G = G;) C*(@)=Cr (@)
Real reductive Smooth tempered FL(G)
p-adic Smooth admissible finite length The Hecke algebra #(G)

To study these algebras some non-commutative algebraic technics are required, as
cyclic homology groups for spectral invariants and K-groups for index theory and classi-
fication problems. FAIRE LE LIEN AVEC LE CHAPITRE 2

3 Crossed product algebras

Crossed product algebras extend the idea of group C*-algebras by allowing a group G
to act on another algebra A. The construction A X G encodes both the algebraic structure
of A and the dynamics of the group action, generalizing the case A = C which corresponds
to C*(G). Concretely, elements are functions from G to A with convolution twisted by the
action. Crossed products thus provide a noncommutative analogue of transformation
group spaces and dynamical systems. They are central in noncommutative geometry:
when A = 6y(X), the crossed product reflects the G-action on the topological space X.
This section introduces algebraic crossed products, explains their functorial properties,
and presents fundamental results such as Green’s imprimitivity theorem. This part is
deeply inspired from the great book [Wil07], which stands as the classical reference for
the subject.

3.1 Algebraic crossed product

A C*-dynamical system is a triple (A,G,a) of a C*-algebra A, a locally compact
group GG and an action a of G on A by continuous automorphisms. Let 6.(G,A) be the
space of compactly supported continuous functions. We define the twisted convolution by:

(1% f2)(g) i= fG Fi()as(Fals ' @))ds.

The algebra (6.(G,A),*) with this convolution product is called algebraic crossed
product and denoted A X G. When A = C is equipped with the trivial action, we recover
the usual convolution algebra %6.(G) of the group.

3.2 Full and reduced crossed product

A covariant representation of the dynamical system (A,G, a) on a Hilbert space H
is the data of 7 : A — B(H), a non-degenerate representation of A and U : G — U(H) a
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strongly continuous unitary representation of G which intertwine as:
Ugﬂ(a)U; =n(ag(a)).

In this context, we call integrated form of a covariant representation (7,U) the operator
axU:6,(G,A)— B(H) defined as

(11 UNf) = fG (F(@)U,(w)dg.

It is a generalization of the integration form (1) we defined for usual convolution algebras.
As before, it builds a left-module over the algebra 6.(G,A) which depends only on the
covariant representation (,U). The full crossed product A x, G is the completion of
€6.(G,A) for the norm

If I max := sup [z < U)OI.

(7,U) covariant

It satisfies the universal property that each covariant representation (;r,U) integrates to
a nondegenerate representation 7 x U of A x,G. Modulo unitary equivalences, it realizes
the following equivalence of categories:

CovRep(A,G,a) —— Non-DegRep(A x,G)/ ~
(,U) — nxU

This crossed product A X, G encodes both the algebraic structure of A and the dynam-
ics of the G-action. It is best thought of as the noncommutative quotient of the system
(A,G,a). when A = C is endowed with the trivial action, C x;4 G is nothing other than
the group C*-algebra C*(G).

The reduced crossed product A x, G is the completion of 6.(G,A) for the reduced
norm

117 2= (Treg X A

where (7yeg,A) is the regular covariant representation on the Hilbert space H = L2G)
defined as:
(Treg(@)()(x) := a; (@) (g) and (M@)(f)(x) = f(g ™ x).

When A = C with trivial action we recover the reduced C*-algebra C(G) of the group.
Also, if G is compact (and more generally amenable), the Peter-Weyl theorem asserts that
AXqgG=AX,y,G.

3.3 Properties of crossed product

The main properties of crossed product algebras are categorical and require the no-
tion of Morita equivalences.Two rings A and B are Morita equivalent if their category
of modules A-mod and B-mod are equivalent; we will write A ~ B. For instance, any
ring A is Morita equivalent with all of its matrices spaces .#,(A). When A and B are
C*-algebras, we forget the algebraic and *-structures to check Morita equivalences.



Crossed products enjoy remarkable structural features. Green’s imprimitivity the-
orem [Gre80] shows that they preserve Morita equivalences under restriction to sub-
groups and Takai duality [Rae88] stands as a Fourier inversion theorem in the operator-
algebraic setting. To state these results we need the definition of Morita equivalence.

If X is topological space endowed with an action a of G, we can extend the action
on A = 6o(X) by the formula (agf)(x) := f(a;lx). Then (6y(X),G,a) becomes a C*-
dynamical system and defines the crossed product 6y(X) x4 G. This C*-algebra en-
codes the orbit structure of the action as states the following theorem from [Com84] and
[Gre77].

THEOREM 3.1 When the action of G on X is free and proper, we have the Morita equiva-
lence:

C0(X) Xq G ~6o(X/Q).

For instance, let us take G = Z and X =R, for the integer translations 7. The action
of Z extends to 6p(R) with the formula (7, f)(x) = f(x —n). Under Fourier transform, the
action becomes

Tnf)x) = exp(2innx)f (x).

Since exp(2innx) = exp(2inmx) for any integers, the value of f(x) depends only x mod 1
and the Fourier transform f defines a function on S!. This approach sticks with the
Morita equivalence between 6y(R) x; Z and €(S1).

If H is a subgroup of G, the C*-algebra 6,(G,A) is naturally equipped with the di-
agonal action of the subgroup H. The fixed points with respect to this action 6y(G,A)H
stands a non-commutative analogue of the construction of a vector bundle G xg V over
G/H from any representation V over H.

THEOREM 3.2 (Green Imprimitivity) If G acts on A with an action a and H is a sub-
group of G, there is Morita equivalence:

Co(G, A xqG ~A xgy H.

This fundamental theorem tells us that the study of the crossed product algebra by a
subgroup relies heavily on the understanding of the homogeneous space. Without coeffi-
cients, it stands as in [Rae92]:

Go(G/H) x4, G ~ C*(H). 3)

It provides a profound duality between inducing and restricting representations in the
context of group actions and algebras. Even though the crossed product may seem far
more complicated, its representation theory and structure are fundamentally governed
by the subgroup H. It is one of the motivation for the Connes-Kasparov theorem, follow-
ing the ideas behind Mackey’s theory of induced representations and serves as a noncom-
mutative geometric version of those classical results.

When G is abelian, the crossed product algebra A x, G joys a Pontryagin self-duality
property, known as Takai duality [Tak75l.
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THEOREM 3.3 (Takai duality) If G is a locally compact abelian group which acts by a
on A, then we have the Morita equivalence:

(Axy,G)xzG~A.

4 K-theory

K-theory was born at the crossroads of topology and representation theory. Its origins
can be traced back to the study of vector bundles, where the need arose to compare and
combine bundles in a systematic way. By taking formal differences, A. Grothendieck in-
troduced the notion of a Grothendieck group, leading to topological K-theory due to the
work of M. Atiyah and F. Hirzebruch [AH59]. This construction revealed hidden periodic-
ities, most famously Bott periodicity, which endows the theory with a rich structure and
computational power. The main early notes references are at least [Ati19], [Bot69] and
[Kar08].

It provides a natural framework to organize and compare representations of groups
and algebras. For instance, the algebraic K of the group algebra C[I'] recovers exactly
R(T') when T is finite. For a compact group G, one finds K¢(C(G)) =~ R(G), showing that
K-theory encodes the decomposition of unitary representations. The power of the the-
ory becomes apparent for noncompact or noncommutative settings, where representation
categories are too vast or continuous to handle directly. K-theory distills this complexity
into computable invariants: classes of projections and unitaries capture stable aspects of
representations. This is precisely what makes it central in the Baum—Connes conjecture,
where K;(C}(G)) serves as the receptacle for the universal index of equivariant elliptic
operators.

K-theory unifies several perspectives: it arises from vector bundles in topology, from
representation rings in algebra, and from operator algebras in analysis. This convergence
is one of its deepest strengths. Far from being an abstract construction, K-theory extracts
computable invariants that bridge geometry, topology, and representation theory, provid-
ing a conceptual language in which index theorems and assembly maps naturally live.
Great introduction are given by [Mur90[, [RLLOO], [HRO1] and [WQ93I.

4.1 The K-groups

4.1.1 For spaces

We take X to be a topological space. Let us consider the space VB(X) generated by
the isomorphism classes of complex vector bundles over X. The even K-theory of X is
the Grothendieck group of VB(X) for the direct sum of vector bundles:

K%X):= Gr(VB(X)).

It corresponds to a quotient of VB(X) with respect to the relation [E] ~ [E'] +[E"] if we
have an exact sequence 0 — E' — E — E" — 0 of vector bundles over X. The group K°(X)
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is abelian and generated by the formal differences [E]—[E’] € Ko(X) of such vector bun-
dles. It defines a contravariant functor from the category of topological spaces to the
category of abelian groups. This functor is homotopy invariant, which is that if X and Y
are homotopic as topological spaces, then K%(X) = K°(Y).

The easiest example of computation is when X = p¢. A vector bundle over a point is
just a finite dimensional vector space. Modulo isomorphisms, finite dimensional vector
spaces are classified by their dimensions and we have K%(pt) := Gr(N) = Z.

The suspension ~ZX over X is the topological space:
ZX :=(X x[0,1])/ =, where(x,1) = (y,1) and (x,0) = (y,0) for all x,y € X.
The higher K-groups of X are defined to be:
K'(X):=K(z'X),

where X'X stands as the i-th suspension of X. As for K°, the higher K-groups are ho-
motopy invariant contravariant functors from the category of topological space to the
category of abelian groups.

The most striking theorem is known as the Bott periodicity theorem which relates
K-groups by parity via a natural isomorphism and makes the K-theory a Z/2Z-graded
theory [Bot70l.

THEOREM 4.1 (Bott periodicity) For every topological space X: K'(X) ~ K'*2(X).

Due to this theorem, we will mainly be interested in K°(X) and K1(X).

4.1.2 For algebras

We fix A to be a unital C*-algebra. We call ?(A) the space of idempotent ma-
trices or projections with coefficients in A. This space stands as a non-commutative
analogue of the vector bundles over topological spaces. Indeed, if A = 6y(X) is the space
of vanishing at infinity functions over a given topological space, the Serre-Swan theorem
[Swa62] asserts that its space of idempotent matrices is in bijection with the space of
vector bundles on X:

VB(X) — P(6p(X)),

where we identify a vector bundle with its sections vanishing at infinity. The space of
idempotent matrices, or projections, defines a semi-group for the diagonal block law.

We define the K-theory of A to be the Grothendieck group of isomorphism classes of
projections on A:
Ko(A) := Gr(£2(A)).

We define the loop algebra QA to be the space of loops of source 0 in A:

QA :={f:[10,1] — A | f continuous and f(0)=f(1)=0€ A}.
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The higher K-groups of A are defined to be the Ky-groups of iterated suspension alge-
bras: .
K;(A):=Ko(Q'A).

The Bott periodicity theorem is also true in this algebraic context.
THEOREM 4.2 (Bott periodicity) For all C*-algebra A: K;(A) ~K;.2(A).

Thus we will be mainly interested in Ky(A) = Gr(22(A)) and K1(A) = Ky(QQA). Despite
the definition of K;(A) in terms of idempotent matrices over the loop algebra, we have
another equivalent description. Two unitary matrices of any size u,v € Uy (A) are said
to be homotopic, and we note u ~ v, if there exists a unitary path connecting them. We
can compare matrices of difference sizes as we embed iteratively U,(A) < U,+1(A) on the
up-left corner. We can describe K;(A) as the space of unitary matrices of any dimension
over A modulo homotopy:

Ki(A) =Ux(A) ~. (4)

We recall that the Serre-Swan theorem states that the space of projections over 6,(X)
is in bijection with vector bundles over X. Also, the loop algebra Q%,(X) coincides with
60(ZX) as suggested by the Eckmann—Hilton duality [Fuk66l, which induces the follow-
ing theorem.

THEOREM 4.3 For all topological space X, the following are isomorphisms of abelian
groups:

Ko(6o(X)) = K*%X) and K1(65(X)) = K} (X).
4.2 Properties of K-groups

The groups K and K7 define functors from the category of C*-algebras to the category
of abelian groups which preserve algebraic homotopy invariances. We say that two x-
homomorphisms ¢,y : A — B are homotopic if there exists a path of x-homomorphisms
¢: : A — B connecting ¢ and ¥ and such that ¢ — ¢;(a) is continuous for all a € A. Two
C*-algebras A and B are said to be homotopic if it exists x-homomorphisms ¢: A — B
and ¥ : B — A such that ¥ o ¢ is homotopic to id4 and ¢ oy is homotopic to idp. As a
direct consequence of their definition, the groups Ko and K; respect these properties.

PROPOSITION 4.4 If A and B are two homotopic C*-algebras:
Ko(A) = Ko(B) and K;(A) = K1(B).

PROPOSITION 4.5 The K-theory groups are stable under Morita equivalent. If A and B
are two C*-algebras with Morita equivalent underlying rings:

Ko(A) = Ko(B) and K1(A) = Ki(B).
From a split exact sequence of unital C*-algebras

0—-J—>ALAJ—0

13



it is possible to define maps dg : Ki(A/J) — Ko(J) and 07 : Ko(A/J) — Ki(J) known as
boundary maps [HRO1]. For that, we use the description of K; with unitary matrices as
in (). If u is a unitary matrix over A/J, we can lift it up to @ € A such that ||| = 1. The
operators 1 —a*a and 1 —aa* define projections over J and:

do(luD) =[1-a*al-[1-aa™] e Ky(J). (5)

In the case where A = B(H) and J = & (H) are boundary and compact operators over a
Hilbert space, the boundary map 9y corresponds to the Fredholm index of a. Now, if
[p]-I[ql € Ko(A/J) is a formal difference of two projections p and q over A/J, we can lift
them to self-adjoint matrices P and @ over A. The matrices exp(2i7P) and exp(2i7@) are
then unitary over the C*-algebra J and we get:

01([p]1-[g]) = [exp(2inP)] - [exp(2i7Q)] € K1 (J). (6)

This boundary map 91 is often call exponential map. These construction are related via
the following statement, known as excision theorem.

PROPOSITION 4.6 If0 — J — A — A/J — 0 is an exact sequence of C*-algebras, then the
following is exact:

Ko(J) —— Ko(A) —— Ky(A/J)

aOT lal

Ki(A/d) <— Ki(4) «— Ki(J)

The fact that K-theory groups preserve homotopy equivalences, Morita equivalences
and possess the excision property makes naturally K-theory as a Z/27-graded theory. It
cannot be computable using resolutions in this context but the Chern character relates
these invariants to De Rham cohomology or periodic cyclic homology and makes it more
affordable. It is the purpose of the second chapter of this thesis.

4.3 Traces

Another fundamental tool in K-theory is its compatibility with traces. Indeed, any
trace on a given C*-algebra A, which is a linear map 7 : A — C such that 7(ad) = 7(ba),
can be extended to a trace on the space of idempotent matrices over A by computing it on
the diagonal:

n

7(p) = Zr(pii).

i=1
Then any trace 7 on A defines a trace 74 on Ko(A) with 7.([p]l-I[q]) :=1(p)—1(q).

The first example which is relevant to study is the classical matrix trace T'r. Its
K-theoretic version is an isomorphism of abelian groups:

Tr : Ko( M, () — Ko(C) = Z.

This can also be viewed as a consequence of the Morita invariance of the K-groups as
A,(C) is Morita equivalent to C for all n.
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When A = €(X) is the space of continuous functions on a compact space X the in-
tegration against a fixed measure 7(f) := [ f is interesting to study. Its K-theoretical
version is defined on complex vector bundles over X by the formula

7 (E]) = f dim(E,)dv(x).
X

The computation of the number 7,(Ind(D)) € C where Ind(D) € Ko(X) is the analytic in-
dex of an elliptic operator D over X is the aim of the Atiyah-Stinger theorem [Ati70]. It
appears to be deeply related to characteristic classes of X and relates the analytic and
topological side of the story. This theorem is one of the main motivations for the develop-
ment of K-theory.

Finally, the canonical trace over the reduced C*-algebra C}(T') associated to a dis-
crete group I' is defined on regular elements by:

T(Z agg) =, €C. (7

gerl’

One may wonder in which circumstances the image of 7, : Ko(C(I')) — C lies in Z, which
is the integrity of the trace. When the group is torsion free, this may prove the Kadison-
Kaplansky conjecture (see and relies heavily on the surjectivity of the Baum-Connes
assembly map (1I). For any locally compact group G, traces on 6.(G) that are relevant
to study are orbital integrals and we dedicate a section for these (see|6.3).

The behavior of K; with respect to traces is directly related to the Chern character.
Indeed, the reason why K, behaves well with traces is because the even Chern class is a
trace over the algebra, while on the other hand, the odd Chern class belongs to the odd
periodic cyclic homology and is far more complicated to study.

4.4 Examples

e A =C: Ky(C) is the Grothendieck group of the space of idempotent matrices over
C. We can associate to any idempotent matrix its rank, which is an integer, and
extend it up to the following map which is an isomorphism:

Ko(C) — z
[p1-[q] — rk(p)-rk(q)

Also, as the spaces U, (C) are connected, every unitary matrix define the same class
in K;(C)=0.

* A = % (H) is the space of compact operators over a infinite dimensional Hilbert
space: The algebra £ (H) is Morita equivalent to C, and then possesses the same
K-theory groups Ko(A (H)) = C and K{(# (H)) =0.

e A =9 isthe Toeplitz algebra: This algebra fits into the long exact sequence

0— F(2N) — T — €(SH — 0.
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We computed before the K-theory groups of £ (H) and we can check that K;(€(S OE
K'(S1) = 72 for i = 0,1. Then, by the excision theorem we get that Ko(J) = Z and
Ki(9)=0.

* A =C}(G) where G is a locally compact group: The computation of the K-groups of
C(G) is one of the key motivation for K-theory and more precisely for the Baum-
Connes conjecture [PV81]. Some answers have been provided from different frame-
works and for different cases.

- When G is trivial, C}(G) = C and we know K((C) = Z and K;(C) = 0;

- When G = Z/2Z, the reduced C*-algebra C(Z/2Z) is nothing else that the
space of vanishing at infinity function over the Pontryagin duals of Z/27Z,
which is 7/27 itself: C}(Z/27) = 6y(2/2Z) ~ Co C. The K-theory of such a
C*-algebra is Ko(C(Z/22)) = Ko(C) ® Ko(C) = Z & Z, while K;(C(Z2/22)) = 0.

— More generally when G is finite, we have Ko(C(G)) =~ Z™ and K1(C}(G)) =
0, where m denotes the number of equivalent classes of unitary irreducible
representations of G;

- When G is abelian, we saw that C}(G) is isomorphic to :60(@) via Fourier
transform, which induces the descriptions Ko(C*(Q)) =~ K%@G) and K1(C*(@)) =
KG);

— When G is compact, the Peter-Weyl theorem states that we can decompose the
reduced C*-algebra of the group as a direct sum of matrix spaces [PW27]:

CrG)= @ 4,0
[71eG

where d; is the dimension of the representation 7. As each summand .4 (C)
is Morita equivalent to C whose K-groups are Ko(C) = Z and K;(C) =0, we get:

Ko(Cr(G)= Y Z=R(G)and Ki(C}(G)) =0. (8)
[7]e@

While operator K-theory is well-adapted to C*-algebras and captures many topolog-
ical invariants, smooth crossed product algebras and Fréchet completions require ho-
mological tools such as periodic cyclic homology. These invariants, linked by the Chern
character, enable the study of noncommutative spaces that do not admit a C*-structure,
generalizing the classical de Rham and Hodge theories to the operator-algebraic setting.
This will be the purpose of the second chapter below.

5 The Baum-Connes conjecture

A recurrent theme of this chapter has been the importance of reduced group C*-
algebras and the difficulty to compute their K-theory. Even in relatively simple situ-
ations, such as non-abelian discrete groups, the structure of K;(C*(G)) remains highly
elusive. By contrast, when groups act on geometric spaces, topological tools often provide
computable invariants, such as equivariant K-theory and K-homology.

16



The assembly map was introduced precisely to bridge this gap. Its guiding philosophy
is that the analytic K-theory of a group should not be approached directly, but rather
assembled from the topological data of proper G-actions. The natural receptacle for such
data is the equivariant K-homology of the universal space EG, which encodes all proper
actions of G. The assembly map thus provides a canonical transformation

u:KS(EG)— Ki(CHG)),

sending geometric cycles — such as equivariant elliptic operators — to analytic classes
in the group C*-algebra. From this perspective, the assembly map generalizes the index
theorem: it transforms geometric information into analytic invariants.

In this way, the assembly map serves as a conceptual and computational tool: it is the
mechanism that translates accessible topological information into the deep and often in-
accessible analytic invariants of noncommutative geometry. The celebrated Baum—Connes
conjecture, formulated in the 1980s, asserts that this translation is in fact exact: the as-
sembly map is an isomorphism for all second countable, locally compact groups.

5.1 Equivariant K-theory

We saw that K-theory provides a great geometric tools via the study of vector bundles.
They provide information on the base space but also on the representations of the struc-
tural group. Indeed, a finite dimensional representation of compact group is nothing else
that an equivariant vector bundle over the point. This remark motivates the study of
equivariant K-theory which defines a version of classical K-theory where the structural
group is fixed. This subsection is deeply inspired by the great introduction [Seg68|]. We
still take G as a locally compact group.

If X is a topological space with a continuous action of G, a G-vector bundle over X is
a complex vector bundle p : E — X such that the total space E is endowed with a contin-
uous action of G, the map p is equivariant, and the translation on the fibers g : E, — E g,
is an isomorphism of complex vector spaces for all g € G.

The space of G-vector bundle VBg(X) over the space X modulo equivalences defines
a semi-group for the direct sum. We call G-equivariant K-theory of the space X, the
Grothendieck group associated to it:

K2(X) := Gr(VBg(X)).

It is an abelian group generated by the formal differences [E]—[F] of G-vector bundles
over X. As for K-theory, it defines a contravariant function from the homotopic category of
compact spaces to the category of abelian groups. We define odd equivariant K-theory
to be:

KL(X):=K2(ZX).

When the group is trivial, we recover the classical K-theory K*(X) we defined in

One of the most important statement for equivariant K-theory is the Green-Julg the-
orem [EMO09] which asserts that we can express equivariant K-theory in terms of crossed
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product algebras. The main statement happens in Kasparov KK-theory but can be ex-
pressed in weaker version as follows.

THEOREM 5.1 (Green-Julg) When (€(X),G,a) is a C*-dynamical system with X and
G compact, we can compute equivariant K-theory using crossed product algebra:

KL(X)=K{(€(X) %, G).

With this theorem, one has several interesting examples of computation due to the be-
havior of crossed product algebras. When G is compact, we already know that Ko(C*(G))
is isomorphic to its representation ring R(G). We also know that C*(G) is nothing other
that the crossed product algebra associated to the action of G on the trivial space. Then

Kg(pt) ~ Ko(€(pt) x;q G) = Ko(C* (@) = R(G).

Now, when H is a closed subgroup of locally compact group G, one can always define a
class in the equivariant K-theory of the homogeneous space G/H from a representation
of H:

(7,V)e R(H)— [G xg V — G/Hl € Kg(G/H) 9)

When G is a compact group, this construction is an isomorphism. Indeed, the formula
informs us that crossed product algebra associated to the translation of G on G/H
is Morita equivalent to the representation ring C*(H). As K-theory is Morita invariant
and due to the Peter-Weyl theorem (8) we obtain the isomorphism:

K(G/H) = Ko(6(G/H) x4 G) = Ko(C*(H)) = R(H).

Finally, when a compact group GG acts freely and properly on a compact space X, due to
(3.1) we can compute the equivariant K-theory in terms of the orbit space:

KL(X) =K{(€(X) xq G) = K{(€(X/G) =K (X/G),

where the isomorphism from left to right is given by the K-theoretic image of the projec-
tion X — X/G.

The equivariant theory provides a tool to compute homological invariants of geometric
crossed product algebras. It tends to understand spaces of orbits, lying between repre-
sentation theory and classical geometry.

5.2 Equivariant K-homology

Let X be alocally compact space, endowed with a proper action a of a countable locally
compact group G. This section proposes an analytic model for equivariant K-homology
which is deeply inspired from the great references [Val02] and [HRO1].

If 7 is a representation of 6,(X) on a Hilbert space H, we say that a bounded operator

T on H is properly n-supported when for every f € 6,(X) it exists g € 6.(Y) such that
Tn(f)=n(g)Tn(f). A generalized G-elliptic operator over X is the data of:
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* a covariant representation (U, ) of the dynamical system (6p(X),G, a) (see on
some Hilbert space H;

¢ a self-adjoint properly n-supported operator F on H which is G equivariant, i.e.
FUgz =UgF for all g € G, and such that the operators

a(f)(F?%-1) and [n(f),F]
are compact for all f € 6p(X).

When X is compact, the compactness conditions on the operator F' are equivalent to the
Fredholmness of the operator itself.

A generalized G-elliptic operator (U,n,F) is even if the underlying H = Hy & H; is
Z7/27-graded and U, & preserve the graduation while F reverses it:

(Uo O (7o O (0 P*
U—(O Ul),n—(o nl)andF—(P 0 )

The generalized G-elliptic operator (U,n,F) is odd otherwise. We say that the cycle is
degenerate if for all f € €,(X):

a(f)F?—-1)=0 and [n(f),F]1=0.
Here are some examples:

1. X =R and G = Z for the integer translation action: We can equip the Hilbert space
H = £%(R) with the covariant representation (U, ) where U is the induced transla-
tion representation by Z and 7 the pointwise multiplication by 6y(R). The Hilbert
transform F is a self-adjoint properly m-supported operator on £2(R). One can
check that (U,n,F) defines an odd Z-cycle on R.

2. X = 8! and G = {1}: The Hilbert space H = £2%(S!) is naturally equipped with
the covariant representation (U = id, ) where 7 is the pointwise multiplication by
%o(S1). We define the operator F on the trigonometric basis (e279),c7 to be F =
diag(sign(n)),cz. It corresponds exactly to the signature of the differential operator
D= —ij—a. One can check that (id,7,F) is an odd cycle of S.

Two cycles co = (Ug, m9,Fo) and ¢1 = (U1,71,F1) of same parity are said to be homo-
topic if Uy = Uy, mp = m1 and if there exists a norm continuous path (F¢)c[o,1] connecting
Fy to F1 such that for each ¢ € [0,1] the triple ¢c; = (Ugy, g, F}) is a cycle of same parity
again. The cycles cg and c; are said to be equivalent and denoted cg ~ c1 if there exists
two degenerate cycles dg and d; such that, up to unitary equivalence, co®d is homotopic
tociod;.

We call G-equivariant K-homology, and we write Kg (X) and K ?(X ), for the sets
of equivalence classes of cycles over X that are even and odd respectively. These are
abelian groups. When G = {1} is the trivial group, we denote K;(X) := Kﬁl}(X ) for the
K-homology groups of X.
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Equivariant K-homology is stable under equivariant homotopy; it is a result of G.
Kasparov [Kas81]. Indeed, if f,g:X — Y are G-homotoopic maps over G-spaces we have
an isomorphism of abelian groups:

K9X)=K%Y)fori=0,1.

5.2.1 Dirac fundamental class

When G acts properly on a spin®-manifold X, we can define a class in Kgim( 0 X) called
Dirac fundamental class. Due to the spin®-structure of X, we can take D :T'(S) — I'(S)
to be the Dirac operator associated to the spinor bundle S — X. The Hilbert space H =
£%(X) is equipped with the covariant representation (U, ) where U the induced action
of G and 7 the pointwise multiplication from 6,(X). Finally, the operator:

1+D?2

= if dim(X) odd

{ D if dim(X) even
F =
[D|

is self-adjoint, properly n-supported and defines the Dirac fundamental class
[Dx]1=[U,m,F) €K, 5 (X).

The example [2l above corresponds to the definition of the Dirac fundamental class in the
odd case for X =S! and G ={1}.

5.2.2 Kasparov-Poincaré duality

Any G-vector bundle E over the spin®-manifold X induces the Dirac bundle E®.S over
X via the tensor product with the spinor bundle S over X. The associated Dirac operator
is denoted Dy and defines the twisted Dirac fundamental class [Dg] € K((fim(X)(X )
with respect to E. We can do the same process for the odd case using the definition of
higher K-groups via suspension. This construction stands as a cap product in K-homology

and generalizes the role of the fundamental class in the De Rham theory [EMO07].

THEOREM 5.2 (Kasparov-Poincaré duality) When the countable locally compact group
G acts on a spin-manifold X, we have the following isomorphism of abelian groups:

. i = G
KPD: Ki(X) — K&, - (X)

[E] — [DE]

Combining the Kasparov-Poincaré duality and the description equivariant K-theory
by the Green-Julg theorem, we obtain the following. When a locally compact group G
acts freely and properly on a locally compact space X we have the following isomorphism
of abelian groups:
K%X) = K/(X/G),

where the map is given by the projection X — X/G. Through this isomorphism, the two
odd cycles in the examples|ll and |2l define the same class in K 1Z([R€) =~ K(S1).
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5.3 The assembly map and the Baum-Connes conjecture

The geometric side of the Baum-Connes assembly map encapsulates the data of proper
actions of G. A space EG equipped with a proper action of G is said to be universal if
it is paracompact with a metrizable orbit space EG/G and if for every proper metrizable
G-space X with X/G paracompact, there exists a unique G-equivariant continuous map
X — EG up to equivariant homotopy. Such a universal space is unique up to equivariant
homotopy. The orbit space EG/G encodes the geometry of proper actions of the group.

For instance, when G is discrete and torsion free EG is nothing other than the uni-
versal covering space EG and EG/G is the classifying space BG. In that case the space
EG captures geometrically the information coming from the group since

K{(EG)=~Ki(BG),

and the singular homology of the classifying space BG computes the integer homology of
the group G. Also, when G is finite EG = {pt} and the Kasparov-Poincaré duality states
the isomorphism:

K9EG "2° KL(pH =R@G).

Finally, when G is a connected reductive Lie group and K a maximal compact subgroup,
the homogeneous space G/K gives a local model for the universal proper space EG and
we have:

KY(EG) =~ KF (G/K) (10)

The assembly map is a function that sends a class of KLG(EG) to a class of K;(Cx(Q@)),
assembling a bridge from geometric to analytic sides [HRO1] and [Val02].
Let [((H,U,n,F)] € KZ.G(EG) be a class represented by a properly supported operator F'.
The dense subspace V := 71(6.(EG))H < H carries a natural 6.(G)-valued inner product

(€1,62)(8) = (&1, Ugé2)H.

Then, completing V for this product yields a Hilbert C*(G)-module 7. The operator F
extends as an adjointable operator & over 7. Depending on the parity of the cycle, we
obtain the following two constructions.

* In the even case, as the operator F is taken to be properly supported and equivari-
ant, the extended operator & is invertible modulo compact C}(G)-linear operators,
and then Fredholm on 7. Its kernel and cokernel are finitely generated modules
over C*(G), hence the definition of the analytic index of &:

Ind®(%) := [ker(F)] - [coker(F)] € Ko(CX(G)).

* In the odd case, the self-adjoint operator & is invertible modulo compact opera-
tors, so its exponential exp(in%) defines a unitary operator modulo compacts. By
standard arguments involving Calkin algebra and the six-term exact sequence in
K-theory (see [Blal2] and |4.6), it determines a class called odd analytic index of
F:

Ind (%) := [exp(inF)] € K1(CX(@G)).
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These classes in both cases are heavily related to the boundary maps (5) and (6) defined
above. This construction, known as Mishchenko—Fomenko index, depends only on the
class in the equivairant K-homology KLG(EG) and then defines a map called assembly
map [MF80]: .

g KHEG) — Ki(Cr(Q) 11)
(H,U,n,F)] — Ind(%)

CONJECTURE 5.3 (Baum-Connes) The assembly map is an isomorphism.

As the left hand side tends to be more easily accessible than the right hand side, one
usually views the Baum-Connes conjecture as an “explanation” of the right hand side.
The original formulation of this striking conjecture by A. Connes and P. Baum was done
in 1982 without using equivariant K-homology as the notion was not yet common. The
conjecture sets up a correspondence between different areas of mathematics as the left-
hand side is of geometric nature while the right-hand side is a purely analytical object.
Let’s draw cases where the assembly map is well understood.

When G is discrete and H is a finite subgroup, EG is modeled by G/H. In that
case, any finite dimensional irreducible representation (p,V) € R(H) induces a cycle in
Kg (G/H) whose underlying Hilbert space is the induced space IndgV as in (??). Its
image through even the assembly map g :Kg (G/H) — Ko(C}(Q)) is the class of the pro-
jection p, on C[H] such that V =Im(p,), but viewed as a projection on Cx(GQ). In other
words we have:

o (Ind§ V) = [p,1€ Ko(CF(G).

Also, when G = Z the left-hand side is the K-homology of BZ = S!. The assembly map is
an isomorphism obtain in that case as the composition of the Kasparov-Poincaré duality

(5.2) and the Pontraygin duality (2):
KXEZ) = K;(SYH "2 Ki(SY) = K¢S "EP Ki(Cr@).

This conjecture doesn’t hold yet but has been proved for the several classes of groups
by different methods:

* connected reductive Lie groups: uses Arthur’s classification of the unitary dual and
deep structural properties of the reduced C*-algebra of the group (by A. Wasser-
mann in 1987);

e groups with Haagerup property: relies on E-theory and KK-theory analytic tools
for the surjectivity of the assembly map while the injectivity uses constructions of
Dirac-dual Dirac elements [HK97;

¢ groups with Rapid Decay property (RD) and a proper, cocompact, isometric action
on a strongly bolic metric space: uses Banach KK-theory as an extension of Kas-
parov’s KK-theory, geometric estimates and analytic properties of group actions on
strongly bolic metric spaces [Laf98l];

* groups that admit a finite presentation with only one relation: applies geometric
group theory techniques, the RD property and employs some new analytic tools
adapted to one-relator groups [BBV99];
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* algebraic groups on characteristic zero local fields: employs tools from p-adic rep-
resentation theory and equivariant KK-theory, reducing to well-understood cases
[CENO3I;

¢ Gromov hyperbolic groups and their subgroups: relies on coarse geometric insights
and controlled operator algebra techniques and employs cyclic homology and Chern
character methods to relate analytic and geometric K-homology [Pus12l;

¢ other cases due to G. Skandalis, B. Bekka, P. de la Harpe et A. Valette, using har-
monic analysis, operator-algebraic methods, and representation theory via orbital
integrals and character formulas.

The main example for which the conjecture is still not proved is the discrete group
SL3(Z). The conjecture can also be stated with coefficients in a C*-algebra A equipped
with an action of G, using crossed product algebras instead of group C*-algebra. The left-
term of the conjecture uses KK-theory with coefficients: KKL.G(%”O(EG),A). It is defined
as the space of generalized G-elliptic operators with underlying A-module Hilbert space.

CONJECTURE 5.4 (Baum-Connes with coefficients) The following assembly map is

an isomorphism: ‘
A :KKZ.G(CKO(ILJG),A) — Ki(A x4, G).

Some counter-examples have been found for this extended conjecture by N. Higson, V.
Lafforgue and G. Skandalis on graph groups [HLS02], using the works of M-L. Gromov.

5.4 Connes-Kasparov Theorem

The Connes-Kasparov theorem stands a Lie-version of the Baum-Connes assembly
map. We fix G to be a connected reductive Lie group and K as a maximal compact sub-
group of G. The homogeneous space G/K is homeomorphic to a certain R?, and then
inherits from a spin®-structure manifold. Also, the Cartan decomposition realizes G as a
product of manifolds

G=KxG/K

but not as a group product. Due to the contractible structure of G/K one may expect that
group properties of G and K are related; this is the aim of the Connes-Kasparov conjec-
ture.

From any finite dimensional representation V of the compact group K, we can define
a G-equivariant vector bundle Ey = G xg V over G/K, as in (9). If we compose this
construction with the Kasparov-Poincaré duality, we get a map:

KPD

R(K) — K2(GIK) K§ . crG/K)

V. — [Ev] — [Dy]:=[Dg,]

As stated in (10), the symmetric space G/K gives a local description of the universal
proper G-space, and thus K iG(le) =~ KLG(G/K ). Through this identification, the assembly

map p must send the class [Dy] € Kgm(G/K)(G/K) to a class in Kgim@/k)(Cx(G)). This
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construction from a representation of K to a class in the K-theory of the reduced C*-
algebra of G is called Dirac induction and denoted D-IndIG{.

CONJECTURE 5.5 (Connes-Kasparov) The Dirac induction is an isomorphism:
D-Indg : R(K) — Kgim@/x)(CX ().

This theorem provides a powerful link between representation theory and operator
algebras. For reductive Lie groups, the Connes—Kasparov conjecture was proved in two
ways by A. Wassermann in 1987 and V. Lafforgue in 1998 [Laf98]. A third way to prove
the Connes-Kasparov conjecture has long been suspected to exist. As A. Connes and N.
Higson insisted, this meant that the Connes-Kasparov isomorphism could be the non-
commutative geometric counterpart of a representation theoretic phenomenon. The re-
formulation of the Connes-Kasparov conjecture in terms of deformations reflects the ob-
servations by G. W. Mackey and leads naturally to the so-called Mackey’s Analogy in
K-theory, which is the purpose of the section

6 Related conjectures

The Baum—Connes conjecture does not live in isolation: it is part of a wider landscape
of deep conjectures linking topology, analysis, and algebra. Among them, the Novikov
conjecture, the Kadison—Kaplansky conjecture, and problems involving orbital integrals
illustrate different facets of the same central question: how do geometric invariants of
groups and spaces manifest in analytic and operator-algebraic frameworks? This section
surveys these conjectures, emphasizing their interconnections and their role as motivat-
ing problems in noncommutative geometry.

6.1 Novikov conjecture

If M is a 4k-dimensional manifold, the composition of cup product together with the
evaluation at the fundamental class [M] € Hy;,(M,R) gives a symmetric bilinear form:

H2*(M,R) x H*M,R) ~= H* 0, "2 R

whose signature is called signature of the manifold and denoted sgn(M). In the 60’s,
F. Hirzebruch proved that we can express this signature via a k-variable universal poly-
nomial L; which is independent on the manifold. Indeed, for all manifolds of dimension
4k we have the formula:

sgn(M) = (Lr(p1,---,pr),[M]) €R,

where the p; stand for the Pontryagin classes of M. The Hirzebruch L-class of M is
defined to be the class

L(M) = ZLk(pl, o, pr) EH*(M,R).
k
F. Hirzebruch, R. Thom and L. Pontryagin proved the following striking theorem [Tho54]].
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THEOREM 6.1 (L(M),[M]) defines an homotopy invariant.

Now, if I' stands as the fundamental group I' = m1(M) of the manifold, the classifying
map f : M — BT of the universal covering M over M sends any cohomological class x €
H*T',Q) to a class f*(x) e H*(M,Q) and defines a higher signature of M:

sgn, (M) := (L(M) U f*(x),[M]).
CONJECTURE 6.2 (Novikov) Higher signatures are homotopy invariants.

This conjecture bridges differential geometry and topology of fundamental groups.
Thanks to M. Atiyah, I. Singer, A. Connes, G. Kasparov and others, the conjecture can be
reformulated using indices of elliptic operators, group C*-algebras and K-theory. We de-
fine the signature operator D; of the manifold to be the sum of the De Rham operator
d and its adjoint d* = — x d*, where % stand as the Hodge star operator: D :=d +d*.
It can be extended uniquely to a I'-equivariant operator Dy on the universal covering M
and then defines a class [Dg] € Kg (M). When the fundamental group I is torsion free
Ky(BI') = Kg (ET), and the pull back of [D,] via the classifying map f gives a class in
K(F)(le) whose image through the assembly map is called I'-equivariant index of D;:

Indr(Ds) := u(f«([Ds1)) € Ko(CX(I)).

Its main property is that its image through the canonical trace 7 of I' (see (7)) computes
the signature of M, as stated in [CM90] and [HRO1]:

Tx«(Indr(Dy)) = sgn(M) € R.

Now, higher signatures can be interpreted as twisted equivariant indices of D;. Any
element x € H*(I', Q) can be viewed defines an element in HPy(C[I']) (see second chapter)
and the Chern-Connes pairing produces a trace on Ky(C[I']) which can be extended to:

(1%)4 : Ko(CF(D)) — C.

The image of the I'-equivariant index of D through this trace computes higher signa-

tures:
(") (Indr(Dy)) = sgn, (M) € R.

The difficulty to show that higher signatures are homotopy invariant then relies on the
injectivity of the assembly map. Thus, the following conjecture implies the Novikov con-
jecture.

CONJECTURE 6.3 The assembly map is rationally injective.

This links between Novikov conjecture and the behavior of the assembly map means
that u encodes all higher signatures at once. The proof of this conjecture in the K-
theoretical setting for hyperbolic groups is due to M. Gromov and Connes-Moscovici and
the case of amenable groups has been done by Higson-Kasparov and Guentner-Higson-
Trout.
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6.2 Kadison-Kaplansky conjecture

CONJECTURE 6.4 (Kadison-Kaplansky) When 1 is a torsion free discrete group, the
only idempotent of C}(T') are exactly 0 and 1.

While the Novikov conjecture relies on the rational injectivity of the assembly map,
this conjecture relies essentially on its surjectivity. The first step is to show that if the
canonical trace 7 defined in (7) is integer valued, then the conjecture holds. If e is an
idempotent of C(I') we have:

te)+1(1—e)=1(ee®)+1((1—e)(1—e*))=1.

Then if Im(74) S Z, either 1(e) = 7(ee*) = 0 and e = 0 by faithfulness of the trace, or
7(1—e) =0 and e = 1. Now, a result due to A. J. Berrick, I. Chatterji and G. Mislin
[BMG10] shows that when I is a torsion free discrete group:

Im(z4opu’)cZ.

If the assembly map is onto, then Im(7,) € Z and the Kadison-Kaplansky holds: there are
no non-trivial idempotents in C}(T'). A great introduction to the Baum-Connes conjecture
via the Kadison-Kaplansky conjecture is given by [Val02].

6.3 Orbital integrals

As we have seen in (7), the canonical trace on the reduced C*-algebra of a locally
compact group G induces a relevant map on Ko(C*(G)). We can compute the value of this
K-theoretical trace for different classes of representations. Indeed, for the discrete series
this canonical trace gives the formal degree of the representation while it vanishes for
the other representations [CM82]]. A natural generalization of this trace involves orbital
integrals and then can be used to extract properties from Ky(C}(G)). For a semisimple
element g € G, the orbital integral 7,(f) of a function f on G is defined to be the integral
of f over the conjugacy class of g:

re(f)i= [ fhgh™an,
GIG,

where G; stands as the centralizer of g in G. We recover the canonical trace with g = eg.
These integrals converge for functions in the Harish-Chandra’s Schwartz algebra .#(G)
whose K-theory is the same as the redued C*-algebra of the group:

Ki(L (@) =K;(Cr(@)). (12)
Then orbital integrals lead to K-theoretic traces:
74 :Ko(C}(G)) — C.

If D is an elliptic operator associated to a G-vector bundle over a space X, one may be
interested on the image of its equivariant index trough the integral orbital traces:

7,(Indg(D)) € C.
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Fixed point formulas have been showed for these numbers when G is discrete [WW13]]
and of Lie-type [HW17]. For the discrete case, these formulas have consequences on orb-
ifold geometry and positive scalar curvature metrics while the Lie case generalizes a
Harish-Chandra’s character formula. More recently, an explicit formula have been com-
puted for the 7,(Indg(D)) [HW18]. It turns out these vanish if rk(G) # rk(K) but has
interesting consequences if their rank are the same. For instance, it spotlights an em-
bedding of Ko(C}(G)) in the space of distributions on regular elements of G, an induction
formula from K-equivariant indices to G-equivariant indices and a K-theoretical version
of the vanishing Selberg principle [BB92].

7 Mackey analogy

The Mackey analogy draws a conceptual bridge between the representation theory
of reductive Lie groups and that of simpler “motion groups” associated to their maximal
compact subgroups. This analogy, reformulated in operator-algebraic terms, provides
insight into the structure of the unitary dual and clarifies the role of crossed product al-
gebras in representation theory. In this part we review the Cartan motion group, explain
its relation to equivariant K-theory, and discuss Connes—Higson’s deformation picture of
the assembly map, which encapsulates the geometric content of the Connes—Kasparov
theorem.

REFAIRE LA PARTIE

7.1 The Cartan motion group

The Cartan motion group Gy is defined to be the semi-direct product
G() =KxP

where the action of K on P is given by k-X := ad(k)X. The Lie groups G and G are
homeomorphic but don’t possess the same group structure. In the 1970’s, Mackey sug-
gested that there should be a natural bijection between the tempered dual of G and the
unitary dual of G, which have been proved years later as the Mackey-Higson bijection:

.%ZG\()<—'G\1§.

Because Gy = K xp is an extension of K by a vector abelian group of even dimension,
Gy is amenable and C*(Go) = C*(Gy). Also, the equivariant Bott periodicity theorem
yields a natural isomorphism between Ko(C*(Gg)) and R(K). Under this identification,
the Connes-Kasparov conjecture becomes the comparison:

Ko(C*(Go)) — Ko(CF(GY).

7.2 Connes-Higson picture for the assembly map

As G and G possess the same manifold structure, it is natural to think on a continu-
ous family of groups (G¢);eg Which interpolates between G1 = G and Gy, these are called
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deformation groups. For every non-zero ¢, we define G; to be the set G equipped with
the topology that makes the following map an homeomorphism:

(/)tl KxP — G
(£, X) — kexpg(tX)

The disjoint union ¢ = L;cgG; is a topological space with the topology inherited from

& — Gou(G xR*)

g ift=0
geG { (Pe(2),t) else

AJOUTER BEAUCOUP PLUS

This topology on ¢ makes the field {C(G¢)}er a continuous field of C*-algebras. We
finally define:

€= C* (I (IC} Gher —10,11)).

This topology on ¢ makes the field {C(G:)}:cr a continuous field of C*-algebras. We
finally define:

€= C* (I (1C} Goher — 10,11) ).

This C*-algebra encapsulates the whole deformation from the reduced C*-algebra of G
to the reduced C*-algebra of G = G1. It is naturally equipped with two canonical maps:

C*(Go) =2 ¢ 2 CH@G).

When both of this map are quasi-isomorphisms in K-theory the Connes-Kasparov con-
jecture holds. As the topology of ¢ suggests it, it is easier to show that ag is a quasi-
isomorphism in K-theory, and it is even feasible to find an inverse of it. The tougher
proof for the other map a; have been proposed by A. Connes and N. Higson in 1990 and
recently reformulated by A. Afgoustidis in 2019.

THEOREM 7.1 (Connes-Higson) The map aioa, L defines a quasi-isomorphism:

Ko(C*(Go)) — Ko(CF(GY).
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